Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 813087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359837

RESUMO

Coronavirus disease 2019 (COVID-19) caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an acute respiratory disease with systemic complications. Therapeutic strategies for COVID-19, including repurposing (partially) developed drugs are urgently needed, regardless of the increasingly successful vaccination outcomes. We characterized two-dimensional (2D) and three-dimensional models (3D) to establish a physiologically relevant airway epithelial model with potential for investigating SARS-CoV-2 therapeutics. Human airway basal epithelial cells maintained in submerged 2D culture were used at low passage to retain the capacity to differentiate into ciliated, club, and goblet cells in both air-liquid interface culture (ALI) and airway organoid cultures, which were then analyzed for cell phenotype makers. Airway biopsies from non-asthmatic and asthmatic donors enabled comparative evaluation of the level and distribution of immunoreactive angiotensin-converting enzyme 2 (ACE2). ACE2 and transmembrane serine proteinase 2 (TMPRSS2) mRNA were expressed in ALI and airway organoids at levels similar to those of native (i.e., non-cultured) human bronchial epithelial cells, whereas furin expression was more faithfully represented in ALI. ACE2 was mainly localized to ciliated and basal epithelial cells in human airway biopsies, ALI, and airway organoids. Cystic fibrosis appeared to have no influence on ACE2 gene expression. Neither asthma nor smoking status had consistent marked influence on the expression or distribution of ACE2 in airway biopsies. SARS-CoV-2 infection of ALI cultures did not increase the levels of selected cytokines. Organotypic, and particularly ALI airway cultures are useful and practical tools for investigation of SARS-CoV-2 infection and evaluating the clinical potential of therapeutics for COVID-19.

2.
Transbound Emerg Dis ; 69(2): 297-307, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33400387

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an emerging virus that has caused significant human morbidity and mortality since its detection in late 2019. With the rapid emergence has come an unprecedented programme of vaccine development with at least 300 candidates under development. Ferrets have proven to be an appropriate animal model for testing safety and efficacy of SARS-CoV-2 vaccines due to quantifiable virus shedding in nasal washes and oral swabs. Here, we outline our efforts early in the SARS-CoV-2 outbreak to propagate and characterize an Australian isolate of the virus in vitro and in an ex vivo model of human airway epithelium, as well as to demonstrate the susceptibility of domestic ferrets (Mustela putorius furo) to SARS-CoV-2 infection following intranasal challenge.


Assuntos
COVID-19 , Furões , Animais , Austrália , COVID-19/veterinária , Vacinas contra COVID-19 , Humanos , SARS-CoV-2
3.
Viruses ; 12(6)2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599823

RESUMO

The respiratory Influenza A Viruses (IAVs) and emerging zoonotic viruses such as Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) pose a significant threat to human health. To accelerate our understanding of the host-pathogen response to respiratory viruses, the use of more complex in vitro systems such as normal human bronchial epithelial (NHBE) cell culture models has gained prominence as an alternative to animal models. NHBE cells were differentiated under air-liquid interface (ALI) conditions to form an in vitro pseudostratified epithelium. The responses of well-differentiated (wd) NHBE cells were examined following infection with the 2009 pandemic Influenza A/H1N1pdm09 strain or following challenge with the dsRNA mimic, poly(I:C). At 30 h postinfection with H1N1pdm09, the integrity of the airway epithelium was severely impaired and apical junction complex damage was exhibited by the disassembly of zona occludens-1 (ZO-1) from the cell cytoskeleton. wdNHBE cells produced an innate immune response to IAV-infection with increased transcription of pro- and anti-inflammatory cytokines and chemokines and the antiviral viperin but reduced expression of the mucin-encoding MUC5B, which may impair mucociliary clearance. Poly(I:C) produced similar responses to IAV, with the exception of MUC5B expression which was more than 3-fold higher than for control cells. This study demonstrates that wdNHBE cells are an appropriate ex-vivo model system to investigate the pathogenesis of respiratory viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/virologia , Mucosa Respiratória/citologia , Mucosa Respiratória/virologia , Animais , Brônquios/citologia , Brônquios/virologia , Células Cultivadas , Quimiocinas/metabolismo , Citocinas/metabolismo , Cães , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/epidemiologia , Junções Intercelulares , Células Madin Darby de Rim Canino , Modelos Biológicos , Mucina-5AC/metabolismo , Pandemias , Cultura de Vírus
4.
Reprod Fertil Dev ; 31(7): 1252-1265, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30641029

RESUMO

Marsupials have a very different reproductive strategy to eutherians. An Australian marsupial, the tammar wallaby (Macropus eugenii) has a very short pregnancy of about 26.5 days, with a comparatively long lactation of 300-350 days. The tammar mother gives birth to an altricial, approximately 400 mg young that spends the first 200 days postpartum (p.p.) in its mother's pouch, permanently (0-100 days p.p.; Phase 2A) and then intermittently (100-200 days p.p.; Phase 2B) attached to the teat. The beginning of Phase 3 marks the first exit from the pouch (akin to the birth of a precocious eutherian neonate) and the supplementation of milk with herbage. The marsupial mother progressively alters milk composition (proteins, fats and carbohydrates) and individual milk constituents throughout the lactation cycle to provide nutrients and immunological factors that are appropriate for the considerable physiological development and growth of her pouch young. This review explores the changes in tammar milk components that occur during the lactation cycle in conjunction with the development of the young.


Assuntos
Animais Recém-Nascidos/crescimento & desenvolvimento , Lactação/fisiologia , Marsupiais/fisiologia , Leite , Animais , Feminino , Estado Nutricional
5.
Mol Cell Endocrinol ; 436: 169-82, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27452799

RESUMO

The regulation of the tammar wallaby (Macropus eugenii) early lactation protein (ELP) gene is complex. ELP is responsive to the lactogenic hormones; insulin (I), hydrocortisone (HC) and prolactin (PRL) in mammary gland explants but could not be induced with lactogenic hormones in tammar primary mammary gland cells, nor in KIM-2 conditionally immortalised murine mammary epithelial cells. Similarly, ELP promoter constructs transiently-transfected into human embryonic kidney (HEK293T) cells constitutively expressing the prolactin receptor (PRLR) and Signal Transducer and Activator of Transcription (STAT)5A were unresponsive to prolactin, unlike the rat and mouse ß-casein (CSN2) promoter constructs. Identification of the minimal promoter required for the hormone-independent transcription of tammar ELP in HEK293Ts and comparative analysis of the proximal promoters of marsupial ELP and the orthologous eutherian colostrum trypsin inhibitor (CTI) gene suggests that mammary cell-activating factor (MAF), an E26 transformation-specific (ETS) factor, may bind to an AGGAAG motif and activate tammar ELP.


Assuntos
Hormônios/farmacologia , Macropodidae/genética , Glândulas Mamárias Animais/metabolismo , Proteínas/genética , Transcrição Gênica/efeitos dos fármacos , Animais , Sequência de Bases , Sítios de Ligação/genética , Células Cultivadas , Sequência Conservada/genética , Feminino , Camundongos , Proteínas do Leite/genética , Proteínas do Leite/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas/metabolismo , Ratos , Elementos de Resposta/genética , Alinhamento de Sequência , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição/efeitos dos fármacos
6.
Gene ; 578(1): 7-16, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26639991

RESUMO

The colostrum trypsin inhibitor (CTI) gene and transcript were cloned from the Cape fur seal mammary gland and CTI identified by in silico analysis of the Pacific walrus and polar bear genomes (Order Carnivora), and in marine and terrestrial mammals of the Orders Cetartiodactyla (yak, whales, camel) and Perissodactyla (white rhinoceros). Unexpectedly, Weddell seal CTI was predicted to be a pseudogene. Cape fur seal CTI was expressed in the mammary gland of a pregnant multiparous seal, but not in a seal in its first pregnancy. While bovine CTI is expressed for 24-48 h postpartum (pp) and secreted in colostrum only, Cape fur seal CTI was detected for at least 2-3 months pp while the mother was suckling its young on-shore. Furthermore, CTI was expressed in the mammary gland of only one of the lactating seals that was foraging at-sea. The expression of ß-casein (CSN2) and ß-lactoglobulin II (LGB2), but not CTI in the second lactating seal foraging at-sea suggested that CTI may be intermittently expressed during lactation. Cape fur seal and walrus CTI encode putative small, secreted, N-glycosylated proteins with a single Kunitz/bovine pancreatic trypsin inhibitor (BPTI) domain indicative of serine protease inhibition. Mature Cape fur seal CTI shares 92% sequence identity with Pacific walrus CTI, but only 35% identity with BPTI. Structural homology modelling of Cape fur seal CTI and Pacific walrus trypsin based on the model of the second Kunitz domain of human tissue factor pathway inhibitor (TFPI) and porcine trypsin (Protein Data Bank: 1TFX) confirmed that CTI inhibits trypsin in a canonical fashion. Therefore, pinniped CTI may be critical for preventing the proteolytic degradation of immunoglobulins that are passively transferred from mother to young via colostrum and milk.


Assuntos
Colostro/enzimologia , Otárias/genética , Lactação/metabolismo , Glândulas Mamárias Animais/metabolismo , Inibidores da Tripsina/metabolismo , Animais , Bovinos , Simulação por Computador , Feminino , Otárias/metabolismo , Expressão Gênica , Mamíferos/metabolismo , Gravidez , Homologia Estrutural de Proteína , Suínos , Tripsina/metabolismo , Inibidores da Tripsina/química
7.
Mol Cell Endocrinol ; 382(2): 871-80, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24189438

RESUMO

Marsupial ELP (early lactation protein) and its eutherian orthologue, CTI (colostrum trypsin inhibitor) are expressed in the mammary gland only for the first 100 days postpartum (Phase 2A) in the tammar wallaby and during the bovine and canine colostrogenesis period 24-36h postpartum respectively. The factors which regulate temporal ELP and CTI expression are unknown. A tammar mammary gland explant culture model was used to investigate ELP gene regulation during pregnancy and early- and mid-lactation (Phase 1, 2A and 2B respectively). Tammar ELP expression could only be manipulated in explants in vitro if the gene was already expressed in vivo. ELP expression was maximal in Phase 1 explants treated with lactogenic hormones (insulin, hydrocortisone and prolactin), but unlike LGB (ß-lactoglobulin), ELP expression was maintained in insulin or insulin and hydrocortisone over a 12-day culture period. In contrast, ELP was down-regulated when cultured without hormones. ELP could not be induced in explants cultured from mid-lactation which suggested that transcriptional repressors may prevent ELP expression during this period.


Assuntos
Colostro/química , Regulação da Expressão Gênica , Lactação/genética , Glândulas Mamárias Animais/metabolismo , Proteínas do Leite/genética , Animais , Feminino , Hidrocortisona/farmacologia , Insulina/farmacologia , Lactoglobulinas/genética , Lactoglobulinas/metabolismo , Macropodidae , Glândulas Mamárias Animais/efeitos dos fármacos , Proteínas do Leite/metabolismo , Gravidez , Prolactina/farmacologia , Fatores de Tempo , Técnicas de Cultura de Tecidos , Transcrição Gênica
8.
BMC Evol Biol ; 12: 80, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22681678

RESUMO

BACKGROUND: The marsupial early lactation protein (ELP) gene is expressed in the mammary gland and the protein is secreted into milk during early lactation (Phase 2A). Mature ELP shares approximately 55.4% similarity with the colostrum-specific bovine colostrum trypsin inhibitor (CTI) protein. Although ELP and CTI both have a single bovine pancreatic trypsin inhibitor (BPTI)-Kunitz domain and are secreted only during the early lactation phases, their evolutionary history is yet to be investigated. RESULTS: Tammar ELP was isolated from a genomic library and the fat-tailed dunnart and Southern koala ELP genes cloned from genomic DNA. The tammar ELP gene was expressed only in the mammary gland during late pregnancy (Phase 1) and early lactation (Phase 2A). The opossum and fat-tailed dunnart ELP and cow CTI transcripts were cloned from RNA isolated from the mammary gland and dog CTI from cells in colostrum. The putative mature ELP and CTI peptides shared 44.6%-62.2% similarity. In silico analyses identified the ELP and CTI genes in the other species examined and provided compelling evidence that they evolved from a common ancestral gene. In addition, whilst the eutherian CTI gene was conserved in the Laurasiatherian orders Carnivora and Cetartiodactyla, it had become a pseudogene in others. These data suggest that bovine CTI may be the ancestral gene of the Artiodactyla-specific, rapidly evolving chromosome 13 pancreatic trypsin inhibitor (PTI), spleen trypsin inhibitor (STI) and the five placenta-specific trophoblast Kunitz domain protein (TKDP1-5) genes. CONCLUSIONS: Marsupial ELP and eutherian CTI evolved from an ancestral therian mammal gene before the divergence of marsupials and eutherians between 130 and 160 million years ago. The retention of the ELP gene in marsupials suggests that this early lactation-specific milk protein may have an important role in the immunologically naïve young of these species.


Assuntos
Evolução Molecular , Glândulas Mamárias Animais/metabolismo , Marsupiais/genética , Proteínas do Leite/genética , Sequência de Aminoácidos , Animais , Bovinos , Clonagem Molecular , Biologia Computacional , Cães , Feminino , Genômica , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Gravidez , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
9.
Genome Biol ; 12(8): R81, 2011 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-21854559

RESUMO

BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution.


Assuntos
Evolução Biológica , Macropodidae/classificação , Macropodidae/genética , Transcriptoma/genética , Animais , Austrália , Mapeamento Cromossômico , Cromossomos de Mamíferos/genética , Feminino , Regulação da Expressão Gênica , Genoma , Impressão Genômica , Hibridização in Situ Fluorescente , Macropodidae/crescimento & desenvolvimento , MicroRNAs/genética , MicroRNAs/metabolismo , Dados de Sequência Molecular , Reprodução/genética , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...